PyTorch Essentials: An Applications-First Approach (LFD273)

Kód kurzu: LFD273

Start prototyping AI applications powered by PyTorch by leveraging popular pretrained models in the fields of Computer Vision and Natural Language Processing covering an extensive span of practical applications.

This course provides hands-on experience to train and fine-tune deep learning models using the rich PyTorch and Hugging Face ecosystems of pre-trained models for Computer Vision and Natural Language Processing tasks. Additionally, you will be able to deploy prototype applications using TorchServe, allowing you to quickly validate and demo your application.

Odborní
certifikovaní lektori

Mezinárodne
uznávané certifikácie

Široká ponuka technických
a soft skills kurzov

Skvelý zákaznicky
servis

Prispôsobenie kurzov
presne na mieru

Termíny kurzov

Počiatočný dátum: Na vyžiadanie

Forma: Self-Paced

Dĺžka kurzu: 365 dní

Jazyk: en

Cena bez DPH: 285 EUR

Registrovať

Počiatočný
dátum
Miesto
konania
Forma Dĺžka
kurzu
Jazyk Cena bez DPH
Na vyžiadanie Self-Paced 365 dní en 285 EUR Registrovať
G Garantovaný kurz

Nenašli ste vhodný termín?

Napíšte nám o vypísanie alternatívneho termínu na mieru.

Kontakt

Popis kurzu

The course begins with an overview of PyTorch, including model classes, datasets, data loaders and the training loop. Next, it covers the role and power of transfer learning, along with how to use it with pretrained models. Practical lab exercises cover multiple topics including: image classification, object detection, sentiment analysis, text classification, and text generation/completion. Learners also will use their data to fine-tune existing models and leverage third-party APIs.

This course includes
  • Online, Self Paced
  • 40 Hours of Course Material
  • Hands-on Labs & Assignments1
  • 12 Months of Access to Online Course
  • Digital Badge
  • Discussion forums

Cieľová skupina

This course is designed for machine learning practitioners who want to add deep learning models in PyTorch – especially pretraining models for Computer Vision and Natural Language Processing – to quickly prototype and deploy applications.

Štruktúra kurzu

  • Chapter 1. Course Introduction
  • Chapter 2. PyTorch, Datasets, and Models
  • Chapter 3. Building Your First Dataset
  • Chapter 4. Training Your First Model
  • Chapter 5. Building Your First DataPipe
  • Chapter 6. Transfer Learning and Pretrained Models
  • Chapter 7. Pretrained Models for Computer Vision
  • Chapter 8. Pretrained Models for Natural Language Processing
  • Chapter 9. Image Classification with Torchvision
  • Chapter 10. Fine-Tuning Pretrained Models for Computer Vision
  • Chapter 11. Serving Models with TorchServe
  • Chapter 12. Datasets and Transformations for Object Detection and Image Segmentation
  • Chapter 13. Models for Object Detection and Image Segmentation
  • Chapter 14. Object Detection Evaluation
  • Chapter 15. Word Embeddings and Text Classification
  • Chapter 16. Contextual Word Embeddings with Transformers
  • Chapter 17. Hugging Face Pipelines for NLP Tasks
  • Chapter 18. Q&A, Summarization, and LLMs

Predpokladané znalosti

To get the most possible value from this course, you should be familiar with the following:

  • Python (notions of Object-Oriented Programming (OOP))
  • PyData Stack (Numpy – arrays, slicing, vectorized operations – , Pandas – series, slicing, indexing, transformations – , Matplotlib – basic plotting only – , Scikit-Learn – linear regression, pipelines, one-hot encoding, normalization/scaling, grid search, hyper-parameter optimization)
  • Machine Learning Concepts (supervised learning: regression and classification; loss functions: RMSE, cross-entropy; train-validation-test split; evaluation metrics (R-squared, precision, recall, accuracy, confusion matrix)

To do the lab exercises in this course, you’ll need the following:

  • Google account (for Google Colab, free tier)

Potrebujete poradiť alebo upraviť kurz na mieru?

pruduktová podpora