DP-100 Designing and Implementing a Data Science Solution on Azure

Kód kurzu: DP100P

Táto časť nie je lokalizovaná

Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure.

930 EUR

1 116 EUR s DPH

Najbližší termín od 18.10.2022

Výber termínov

Odborní
certifikovaní lektori

Mezinárodne
uznávané certifikácie

Široká ponuka technických
a soft skills kurzov

Skvelý zákaznicky
servis

Prispôsobenie kurzov
presne na mieru

Termíny kurzov

Počiatočný dátum: 18.10.2022

Forma: Virtuálna

Dĺžka kurzu: 3 dni

Jazyk: cz/sk

Cena bez DPH: 930 EUR

Registrovať

Počiatočný dátum: 24.10.2022

Forma: Virtuálna

Dĺžka kurzu: 3 dni

Jazyk: en

Cena bez DPH: 930 EUR

Registrovať

Počiatočný dátum: 07.11.2022

Forma: Virtuálna

Dĺžka kurzu: 3 dni

Jazyk: cz/sk

Cena bez DPH: 930 EUR

Registrovať

Počiatočný dátum: 21.11.2022

Forma: Virtuálna

Dĺžka kurzu: 3 dni

Jazyk: en

Cena bez DPH: 930 EUR

Registrovať

Počiatočný dátum: 06.12.2022

Forma: Virtuálna

Dĺžka kurzu: 3 dni

Jazyk: cz/sk

Cena bez DPH: 930 EUR

Registrovať

Počiatočný dátum: 06.12.2022

Miesto konania: Praha

Forma: Prezenčná

Dĺžka kurzu: 3 dni

Jazyk: cz/sk

Cena bez DPH: 930 EUR

Registrovať

Počiatočný dátum: 19.12.2022

Forma: Virtuálna

Dĺžka kurzu: 3 dni

Jazyk: en

Cena bez DPH: 930 EUR

Registrovať

Počiatočný dátum: 19.12.2022

Miesto konania: Praha

Forma: Prezenčná

Dĺžka kurzu: 3 dni

Jazyk: en

Cena bez DPH: 930 EUR

Registrovať

Počiatočný dátum: 13.02.2023

Forma: Prezenčná/Virtuálna

Dĺžka kurzu: 3 dni

Jazyk: en/cz

Cena bez DPH: 930 EUR

Registrovať

Počiatočný dátum: 24.04.2023

Forma: Prezenčná/Virtuálna

Dĺžka kurzu: 3 dni

Jazyk: en/cz

Cena bez DPH: 930 EUR

Registrovať

Počiatočný dátum: 22.05.2023

Forma: Prezenčná/Virtuálna

Dĺžka kurzu: 3 dni

Jazyk: en/cz

Cena bez DPH: 930 EUR

Registrovať

Počiatočný dátum: 14.08.2023

Forma: Prezenčná/Virtuálna

Dĺžka kurzu: 3 dni

Jazyk: en/cz

Cena bez DPH: 930 EUR

Registrovať

Počiatočný dátum: 02.10.2023

Forma: Prezenčná/Virtuálna

Dĺžka kurzu: 3 dni

Jazyk: en/cz

Cena bez DPH: 930 EUR

Registrovať

Počiatočný dátum: 04.12.2023

Forma: Prezenčná/Virtuálna

Dĺžka kurzu: 3 dni

Jazyk: en/cz

Cena bez DPH: 930 EUR

Registrovať

Počiatočný dátum: Individuálny

Forma: Prezenčná/Virtuálna

Dĺžka kurzu: 3 dni

Jazyk: en/cz

Cena bez DPH: 930 EUR

Registrovať

Počiatočný
dátum
Miesto
konania
Forma Dĺžka
kurzu
Jazyk Cena bez DPH
18.10.2022 Virtuálna 3 dni cz/sk 930 EUR Registrovať
24.10.2022 Virtuálna 3 dni en 930 EUR Registrovať
07.11.2022 Virtuálna 3 dni cz/sk 930 EUR Registrovať
21.11.2022 Virtuálna 3 dni en 930 EUR Registrovať
06.12.2022 Virtuálna 3 dni cz/sk 930 EUR Registrovať
06.12.2022 Praha Prezenčná 3 dni cz/sk 930 EUR Registrovať
19.12.2022 Virtuálna 3 dni en 930 EUR Registrovať
19.12.2022 Praha Prezenčná 3 dni en 930 EUR Registrovať
13.02.2023 Prezenčná/Virtuálna 3 dni en/cz 930 EUR Registrovať
24.04.2023 Prezenčná/Virtuálna 3 dni en/cz 930 EUR Registrovať
22.05.2023 Prezenčná/Virtuálna 3 dni en/cz 930 EUR Registrovať
14.08.2023 Prezenčná/Virtuálna 3 dni en/cz 930 EUR Registrovať
02.10.2023 Prezenčná/Virtuálna 3 dni en/cz 930 EUR Registrovať
04.12.2023 Prezenčná/Virtuálna 3 dni en/cz 930 EUR Registrovať
Individuálny Prezenčná/Virtuálna 3 dni en/cz 930 EUR Registrovať
G Garantovaný kurz

Nenašli ste vhodný termín?

Napíšte nám o vypísanoe alternatívneho termínu na mieru.

Kontakt

Cieľová skupina

Táto časť nie je lokalizovaná

This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud.

Štruktúra kurzu

Táto časť nie je lokalizovaná

Module 1: Getting Started with Azure Machine Learning

In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace.

Lessons

  • Introduction to Azure Machine Learning
  • Working with Azure Machine Learning

Lab : Create an Azure Machine Learning Workspace

  • Provision an Azure Machine Learning workspace
  • Use tools and code to work with Azure Machine Learning

Module 2: Visual Tools for Machine Learning

This module introduces the Automated Machine Learning and Designer visual tools, which you can use to train, evaluate, and deploy machine learning models without writing any code.

Lessons

  • Automated Machine Learning
  • Azure Machine Learning Designer

Lab : Use Automated Machine Learning

Lab : Use Azure Machine Learning Designer

  • Use automated machine learning to train a machine learning model
  • Use Azure Machine Learning designer to train a model

Module 3: Running Experiments and Training Models

In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models.

Lessons

  • Introduction to Experiments
  • Training and Registering Models

Lab : Train Models

Lab : Run Experiments

  • Run code-based experiments in an Azure Machine Learning workspace
  • Train and register machine learning models

Module 4: Working with Data

Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments.

Lessons

  • Working with Datastores
  • Working with Datasets

Lab : Work with Data

  • Create and use datastores
  • Create and use datasets

Module 5: Working with Compute

One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you’ll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs.

Lessons

  • Working with Environments
  • Working with Compute Targets

Lab : Work with Compute

  • Create and use environments
  • Create and use compute targets

Module 6: Orchestrating Operations with Pipelines

Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it’s time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you’ll explore how to define and run them in this module.

Lessons

  • Introduction to Pipelines
  • Publishing and Running Pipelines

Lab : Create a Pipeline

  • Create pipelines to automate machine learning workflows
  • Publish and run pipeline services

Module 7: Deploying and Consuming Models

Models are designed to help decision making through predictions, so they’re only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing.

Lessons

  • Real-time Inferencing
  • Batch Inferencing
  • Continuous Integration and Delivery

Lab : Create a Real-time Inferencing Service

Lab : Create a Batch Inferencing Service

  • Publish a model as a real-time inference service
  • Publish a model as a batch inference service
  • Describe techniques to implement continuous integration and delivery

Module 8: Training Optimal Models

By this stage of the course, you’ve learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you’ll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data.

Lessons

  • Hyperparameter Tuning
  • Automated Machine Learning

Lab : Use Automated Machine Learning from the SDK

Lab : Tune Hyperparameters

  • Optimize hyperparameters for model training
  • Use automated machine learning to find the optimal model for your data

Module 9: Responsible Machine Learning

Data scientists have a duty to ensure they analyze data and train machine learning models responsibly; respecting individual privacy, mitigating bias, and ensuring transparency. This module explores some considerations and techniques for applying responsible machine learning principles.

Lessons

  • Differential Privacy
  • Model Interpretability
  • Fairness

Lab : Explore Differential provacy

Lab : Interpret Models

Lab : Detect and Mitigate Unfairness

  • Apply differential provacy to data analysis
  • Use explainers to interpret machine learning models
  • Evaluate models for fairness

Module 10: Monitoring Models

After a model has been deployed, it’s important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data.

Lessons

  • Monitoring Models with Application Insights
  • Monitoring Data Drift

Lab : Monitor Data Drift

Lab : Monitor a Model with Application Insights

  • Use Application Insights to monitor a published model
  • Monitor data drift

Predpokladané znalosti

Táto časť nie je lokalizovaná

Successful Azure Data Scientists start this role with a fundamental knowledge of cloud computing concepts, and experience in general data science and machine learning tools and techniques.

Specifically:

  • Creating cloud resources in Microsoft Azure.
  • Using Python to explore and visualize data.
  • Training and validating machine learning models using common frameworks like Scikit-Learn, PyTorch, and TensorFlow.
  • Working with containers

To gain these prerequisite skills, take the following free online training before attending the course:

If you are completely new to data science and machine learning, please complete Microsoft Azure AI Fundamentals first.

Potrebujete poradiť alebo upraviť kurz na mieru?

daniel

Daniel Šťastný

pruduktová podpora