Multilevel Modeling of Hierarchical and Longitudinal Data Using SAS(R)

Kód kurzu: BHLM42

Táto časť nie je lokalizovaná

This course teaches how to identify complex and dynamic patterns within multilevel data to inform a variety of decision-making needs. The course provides a conceptual understanding of multilevel linear models (MLM) and multilevel generalized linear models (MGLM) and their appropriate use in a variety of settings.

The self-study e-learning includes:

  • Annotatable course notes in PDF format.
  • Virtual lab time to practice.

Odborní
certifikovaní lektori

Mezinárodne
uznávané certifikácie

Široká ponuka technických
a soft skills kurzov

Skvelý zákaznicky
servis

Prispôsobenie kurzov
presne na mieru

Termíny kurzov

Počiatočný dátum: Na vyžiadanie

Forma: E-learning

Dĺžka kurzu: 21 hodín

Jazyk: en

Cena bez DPH: 720 EUR

Registrovať

Počiatočný dátum: Na vyžiadanie

Forma: Na vyžiadanie

Dĺžka kurzu: 14 hodín

Jazyk: en

Cena bez DPH: 1 200 EUR

Registrovať

Počiatočný
dátum
Miesto
konania
Forma Dĺžka
kurzu
Jazyk Cena bez DPH
Na vyžiadanie E-learning 21 hodín en 720 EUR Registrovať
Na vyžiadanie Na vyžiadanie 14 hodín en 1 200 EUR Registrovať
G Garantovaný kurz

Nenašli ste vhodný termín?

Napíšte nám o vypísanie alternatívneho termínu na mieru.

Kontakt

Cieľová skupina

Táto časť nie je lokalizovaná

Researchers in psychology, education, social science, medicine, and business, or others analyzing data with multilevel nesting structure

Štruktúra kurzu

Táto časť nie je lokalizovaná

Introduction to Multilevel Models

  • Nested data structures.
  • Ignoring dependence.
  • Methods for modeling dependent data structures.
  • The random-effects ANOVA model.

Basic Multilevel Models

  • Random-effects regression.
  • Centering predictors in multilevel models.
  • Model building.
  • A comment on notation (self-study).
  • Intercepts as outcomes.

Slopes as Outcomes and Model Evaluation

  • Slopes as outcomes.
  • Model assumptions.
  • Model assessment and diagnostics.
  • Maximum likelihood estimation.

The Analysis of Repeated Measures

  • The conceptualization of a growth curve.
  • The multilevel growth model.
  • Time-invariant predictors of growth (self-study).
  • Multiple groups models.

Three-Level and Cross-Classified Models

  • Three-level models.
  • Three-level models with random slopes.
  • Cross-classified models.

Multilevel Models for Discrete Dependent Variables

  • Discrete dependent variables.
  • Generalized linear models.
  • Multilevel generalized linear models.
  • Additional considerations.

Generalized Multilevel Linear Models for Longitudinal Data (Self-Study)

  • Complexities of longitudinal data structures.
  • The unconditional growth model for discrete dependent variables.
  • Conditional growth models for discrete dependent variables.

Predpokladané znalosti

Táto časť nie je lokalizovaná

Before attending this course, you should:
  • Preferably, be familiar with the basic structure and concepts of SAS (for example, the DATA step and procedures).
  • Be familiar with concepts of linear models such as regression and ANOVA and with generalized linear models such as logistic regression.
  • Be familiar with linear mixed models to enhance understanding, although this is not necessary to benefit from the course.
  • Potrebujete poradiť alebo upraviť kurz na mieru?

    pruduktová podpora