Categorical Data Analysis Using Logistic Regression

Kód kurzu: CDAL42

Táto časť nie je lokalizovaná

This course focuses on analyzing categorical response data in scientific fields. The SAS/STAT procedures addressed are PROC FREQ, PROC LOGISTIC, PROC VARCLUS, and PROC GENMOD. The ODS Statistical Graphics procedures used are PROC SGPLOT and PROC SGPANEL. The course is not designed for predictive modelers in business fields, although predictive modelers can benefit from the content of this course.

Odborní
certifikovaní lektori

Mezinárodne
uznávané certifikácie

Široká ponuka technických
a soft skills kurzov

Skvelý zákaznicky
servis

Prispôsobenie kurzov
presne na mieru

Termíny kurzov

Počiatočný dátum: Na vyžiadanie

Forma: Na vyžiadanie

Dĺžka kurzu: 21 hodín

Jazyk: en

Cena bez DPH: 1 800 EUR

Registrovať

Počiatočný
dátum
Miesto
konania
Forma Dĺžka
kurzu
Jazyk Cena bez DPH
Na vyžiadanie Na vyžiadanie 21 hodín en 1 800 EUR Registrovať
G Garantovaný kurz

Nenašli ste vhodný termín?

Napíšte nám o vypísanie alternatívneho termínu na mieru.

Kontakt

Cieľová skupina

Táto časť nie je lokalizovaná

Biostatisticians, epidemiologists, social scientists, and physical scientists who analyze categorical response data and predictive modelers who would like to learn more about the statistical background of logistic regression

Štruktúra kurzu

Táto časť nie je lokalizovaná

Categorical Data and Contingency Table Analysis

  • introduction to categorical data
  • associations among categorical variables
  • stratified contingency table analysis

Binary Logistic Regression

  • introduction to logistic regression
  • adding categorical predictors and the CLASS statement

Model Building

  • empirical logit plots
  • confounding and interactions
  • automatic model selection
  • variable clustering for variable reduction
  • customized tests

Model Illustration and Assessment

  • interaction illustration
  • model sssessment
  • ROC curves
  • outlier detection

Multinomial Logistic Regression

  • ordinal logistic regression
  • nominal logistic regression

Advanced Topics

  • correlated observations
  • GEE regression models
  • conditional logistic regression
  • failure to converge and small samples

Predpokladané znalosti

Táto časť nie je lokalizovaná

Before attending this course, you should
  • have a working knowledge of statistical modeling, including concepts of regression, analysis of variance, and contingency table analysis, which you can obtain in the Statistics 1: Introduction to ANOVA, Regression, and Logistic Regression course
  • have an understanding of basic syntax in SAS procedures and DATA steps
  • have experience in executing SAS programs and creating SAS data sets, which you can gain by completing the SAS Programming 1: Essentials course
  • have experience analyzing frequency tables using SAS software
  • have completed a course in statistics that covers linear regression and logistic regression, which you can achieve by completing the Statistics 1: Introduction to ANOVA, Regression, and Logistic Regression course.
  • Potrebujete poradiť alebo upraviť kurz na mieru?

    pruduktová podpora